%%{init: {'theme':'base', 'themeVariables': {'primaryColor':'#2C3E50','primaryTextColor':'#fff','primaryBorderColor':'#16A085','lineColor':'#16A085','secondaryColor':'#E67E22','tertiaryColor':'#ECF0F1','fontSize':'12px'}}}%%
mindmap
root((IoT Sensor<br/>Applications))
Smart Cities
Parking systems
Traffic monitoring
Street lighting
Waste management
Air quality
Healthcare
Patient monitoring
Wearable devices
Medication tracking
Emergency response
Agriculture
Soil moisture
Weather stations
Livestock tracking
Irrigation control
Crop monitoring
Industrial
Asset tracking
Predictive maintenance
Quality control
Energy monitoring
Safety systems
Home Automation
HVAC control
Security systems
Energy management
Lighting control
Appliances
Environmental
Weather monitoring
Pollution tracking
Water quality
Wildlife monitoring
Disaster prediction
518 Sensor Applications: Hardware Selection Guide
518.1 Hardware Selection Guide by Application Domain
Selecting the right sensors and hardware for your specific IoT application domain requires understanding the unique requirements, constraints, and priorities of each use case. This guide provides practical recommendations for sensor selection across different application domains.
518.1.1 Smart Cities Hardware Recommendations
| Application | Primary Sensors | Microcontroller | Connectivity | Power | Estimated Cost/Node |
|---|---|---|---|---|---|
| Smart Parking | Magnetic field sensor (PNI RM3100) | ESP32 | LoRaWAN/NB-IoT | Battery (5-10 yr) | $80-120 |
| Traffic Monitoring | Magnetic field + Camera | Raspberry Pi 4 | Wi-Fi/4G | Mains | $150-300 |
| Smart Lighting | LDR/BH1750 + PIR motion | ESP32 | Wi-Fi/Zigbee | Mains | $25-40 |
| Waste Management | HC-SR04 ultrasonic | ESP32 | LoRaWAN | Solar + battery | $60-90 |
| Air Quality | MQ-135, MH-Z19 (CO2), PMS5003 | ESP32 | Wi-Fi/4G | Solar + battery | $80-150 |
| Noise Monitoring | MEMS microphone (SPH0645) | ESP32 | Wi-Fi/4G | Solar + battery | $50-80 |
Key Considerations: - Coverage: Smart parking needs 1 sensor per space; air quality 1 per kmΒ² in urban areas - Battery Life: Parking sensors need 5-10 years; waste management 3-5 years - Connectivity: LoRaWAN for wide area (10 km range); Wi-Fi for dense urban - Cost: City-wide deployments require cost under $100/node for viability
Example BOM: Smart Parking Sensor Node - Magnetic sensor PNI RM3100: $25 - ESP32 (low-power variant): $5 - LoRaWAN module (RFM95W): $8 - Lithium battery 3.6V 19Ah: $30 - Enclosure IP67: $15 - Installation hardware: $10 - Total: ~$93 per parking space
518.1.2 Smart Agriculture Hardware Recommendations
| Application | Primary Sensors | Microcontroller | Connectivity | Power | Estimated Cost/Node |
|---|---|---|---|---|---|
| Soil Moisture | Capacitive sensor (STEMMA) | ESP32 | LoRaWAN | Solar + battery | $40-60 |
| Weather Station | BME280, anemometer, rain gauge | ESP32 | Wi-Fi/4G | Solar + battery | $100-200 |
| Irrigation Control | Soil moisture + flow sensor | ESP32 | Wi-Fi | Solar + battery | $80-120 |
| Greenhouse Monitoring | DHT22, CO2 (MH-Z19), light | ESP32 | Wi-Fi | Mains | $60-100 |
| Livestock Tracking | GPS + accelerometer | ESP32 | LoRaWAN/GSM | Battery (6 mo) | $50-80 |
Key Considerations: - Outdoor Rating: IP65+ enclosures required for field deployment - Power: Solar panels (5-10W) with 10-20 Ah batteries for year-round operation - Wireless Range: Farms need 1-5 km range (LoRaWAN ideal) - Durability: Sensors exposed to UV, rain, temperature extremes (-20 to 50Β°C)
Example BOM: Soil Moisture Monitoring Station - 4Γ Capacitive soil moisture sensors: $20 - ESP32 Dev Board: $5 - LoRaWAN RFM95: $8 - Solar panel 6V 3.5W: $12 - 18650 Li-ion battery 3000mAh: $6 - Waterproof box IP65: $8 - Total: ~$59 per monitoring station
518.1.3 Smart Home Hardware Recommendations
| Application | Primary Sensors | Microcontroller | Connectivity | Power | Estimated Cost/Node |
|---|---|---|---|---|---|
| Security System | PIR + door/window sensors | ESP32 | Wi-Fi | Battery (2-3 yr) | $30-50 |
| Energy Monitoring | CT clamps (SCT-013) | ESP32 | Wi-Fi | Mains | $40-60 |
| HVAC Automation | DHT22 + occupancy (PIR) | ESP32 | Wi-Fi/Zigbee | Mains | $25-40 |
| Water Leak Detection | Water detection sensor | ESP8266 | Wi-Fi | Battery (1-2 yr) | $15-25 |
| Indoor Air Quality | BME680 + MH-Z19 (CO2) | ESP32 | Wi-Fi | Mains/USB | $50-80 |
Key Considerations: - Wi-Fi Coverage: Ensure 2.4 GHz Wi-Fi reaches all sensors (range extenders may be needed) - Battery vs. Mains: Battery sensors for doors/windows; mains for energy monitors - Integration: Choose ESP32/Zigbee for Home Assistant, MQTT compatibility - User-Friendly: Simple setup, OTA updates, mobile app control
Example BOM: Complete Smart Home Sensor Kit - 1Γ ESP32 hub: $5 - 3Γ PIR motion sensors: $6 - 2Γ Door/window sensors: $4 - 1Γ DHT22 temp/humidity: $5 - 1Γ MQ-2 gas sensor: $3 - 1Γ Water leak sensor: $2 - Enclosures, wiring: $5 - Total: ~$30 for basic 8-sensor home system
518.1.4 Smart Health Hardware Recommendations
| Application | Primary Sensors | Microcontroller | Connectivity | Power | Estimated Cost/Node |
|---|---|---|---|---|---|
| Heart Rate Monitor | MAX30102 (pulse oximeter) | nRF52840 | BLE | Battery (7-14 days) | $30-50 |
| Fall Detection | MPU6050 (accelerometer/gyro) | ESP32 | Wi-Fi/BLE | Battery (6-12 mo) | $25-40 |
| Body Temperature | MLX90614 (IR non-contact) | ESP32 | Wi-Fi/BLE | Battery/USB | $35-55 |
| Medication Adherence | Load cell + RFID | ESP32 | Wi-Fi | Mains/USB | $40-60 |
| Sleep Monitoring | Pressure mat + MPU6050 | ESP32 | Wi-Fi | Mains | $50-80 |
Key Considerations: - Medical Grade vs. Wellness: FDA approval needed for medical claims (costly); wellness ok for consumer - Privacy: HIPAA compliance if storing health data (encryption, secure transmission) - Battery Life: Wearables need 7+ days; bedside monitors can use mains power - Accuracy: Heart rate Β±2 bpm; temperature Β±0.2Β°C for medical use
Example BOM: Wearable Heart Rate + Activity Monitor - MAX30102 pulse oximeter: $8 - MPU6050 accelerometer/gyro: $4 - nRF52840 BLE module: $12 - 3.7V 250mAh LiPo battery: $5 - TP4056 charging module: $2 - Custom 3D printed case: $3 - Total: ~$34 for wearable device
518.1.5 Smart Industrial Hardware Recommendations
| Application | Primary Sensors | Microcontroller | Connectivity | Power | Estimated Cost/Node |
|---|---|---|---|---|---|
| Vibration Monitoring | ADXL345 (3-axis accelerometer) | STM32F103 | Modbus/Ethernet | Mains/24V DC | $80-150 |
| Temperature Monitoring | Multiple DS18B20 (1-Wire) | ESP32 | Wi-Fi/Ethernet | Mains | $50-80 |
| Current Monitoring | SCT-013 CT clamps | ESP32 | Wi-Fi/Modbus | Mains | $60-100 |
| Machine Vision | Camera (ESP32-CAM) | ESP32 | Wi-Fi | Mains | $40-80 |
| Gas Detection | MQ-4 (methane), MQ-7 (CO) | ESP32 | Wi-Fi/4G | Mains | $50-90 |
Key Considerations: - Industrial Protocols: Support Modbus RTU/TCP, OPC UA, MQTT for integration - Harsh Environments: IP65-67 rated enclosures, -40 to +85Β°C operating range - Reliability: Industrial-grade components, redundancy, UPS backup - Real-time: Sub-second response for safety-critical applications
Example BOM: Predictive Maintenance Vibration Monitor - ADXL345 accelerometer: $8 - STM32F103 microcontroller: $3 - RS485 to TTL module: $5 - 24V to 5V DC-DC converter: $6 - Industrial DIN rail enclosure: $25 - Mounting bracket: $8 - Total: ~$55 per machine monitor
518.1.6 Smart Environment Hardware Recommendations
| Application | Primary Sensors | Microcontroller | Connectivity | Power | Estimated Cost/Node |
|---|---|---|---|---|---|
| Air Quality | PMS5003, MH-Z19, BME680 | ESP32 | Wi-Fi/LoRaWAN | Solar + battery | $100-180 |
| Water Quality | pH, DO, turbidity probes | ESP32 | 4G/LoRaWAN | Solar + battery | $300-600 |
| Seismic Monitoring | ADXL355 (high-g accelerometer) | Raspberry Pi | 4G | Mains/battery | $150-300 |
| Forest Fire Detection | MQ-2, DHT22, smoke detector | ESP32 | LoRaWAN | Solar + battery | $60-100 |
| Noise Pollution | SPH0645 MEMS mic | ESP32 | Wi-Fi/4G | Solar + battery | $50-90 |
Key Considerations: - Remote Locations: Solar power mandatory; 4G/satellite for connectivity - Calibration: Water quality sensors need monthly calibration - Weather Resistance: IP67+ rating, conformal coating on PCBs - Data Frequency: Seismic 100+ Hz; air quality 0.1 Hz
Example BOM: Environmental Air Quality Station - PMS5003 PM2.5/PM10: $25 - MH-Z19C CO2 sensor: $20 - BME680 (temp/hum/VOC): $15 - ESP32: $5 - LoRaWAN RFM95: $8 - Solar panel 10W + controller: $25 - 12V 7Ah sealed lead-acid battery: $18 - Weatherproof enclosure: $30 - Total: ~$146 per monitoring station
518.1.7 Microcontroller Selection by Domain
| Domain | Recommended MCU | Why? | Alternative |
|---|---|---|---|
| Smart Cities | ESP32 + LoRaWAN | Long range, Wi-Fi fallback, low power | nRF52840 (BLE mesh) |
| Agriculture | ESP32 | Wi-Fi + BLE, 18 ADC channels for sensors | STM32 (industrial) |
| Home Automation | ESP8266/ESP32 | Low cost, Wi-Fi, huge community | Zigbee modules |
| Healthcare | nRF52840 | Ultra-low power BLE, wearable-friendly | ESP32 (if Wi-Fi needed) |
| Industrial | STM32F103/F4 | Real-time, industrial protocols, rugged | ESP32 (with RS485) |
| Environment | ESP32 | Multi-sensor, Wi-Fi/LoRaWAN options | Raspberry Pi (edge AI) |
518.1.8 Connectivity Selection Matrix
| Range Needed | Data Rate | Power Budget | Recommended Protocol | Hardware Module |
|---|---|---|---|---|
| < 100m | Low-Med | Very Low | Zigbee | CC2530, XBee |
| < 100m | Med-High | Low | Wi-Fi 2.4GHz | ESP32, ESP8266 |
| < 100m | Very High | Medium | Wi-Fi 5GHz | Raspberry Pi 4 |
| 1-10 km | Very Low | Ultra Low | LoRaWAN | RFM95W, SX1276 |
| 1-10 km | Low | Low | NB-IoT | SIM7020, BC95 |
| Unlimited | Med-High | Medium-High | 4G LTE | SIM7600, EC25 |
518.1.9 Power Budget Planning
Battery Life Estimation Formula:
Battery Life (hours) = Battery Capacity (mAh) / Average Current (mA)
Example: 2500 mAh battery, ESP32 sensor node
- Active (1 sec): 80 mA
- Sleep (59 sec): 10 Β΅A = 0.01 mA
- Average = (80Γ1 + 0.01Γ59) / 60 = 1.34 mA
- Life = 2500 / 1.34 = 1865 hours = 78 days
With solar (10W panel):
- Daily generation: 10W Γ 4 hours (effective sunlight) = 40 Wh
- Daily consumption: 1.34 mA Γ 3.7V Γ 24h = 0.12 Wh
- Result: Solar provides 333Γ needed power β indefinite operation
Power Budgeting Tips: 1. Deep Sleep is Critical: ESP32 active (80 mA) vs. deep sleep (10 Β΅A) = 8000Γ difference 2. Sensor Selection: Digital sensors (I2C) use less power than analog sensors requiring continuous ADC 3. Transmission Cost: Wi-Fi transmission (170 mA) vs. LoRaWAN (40 mA) = 4Γ difference 4. Solar Sizing: Minimum 5W panel for ESP32 with daily transmission in temperate climates
518.1.10 Cost Optimization Strategies
Budget-Conscious Choices: - Prototyping: Buy from Adafruit/SparkFun for reliability and documentation ($30-50 kit) - Small Production (10-50): Amazon for balance of cost/speed/support ($15-25 kit) - Mass Production (100+): AliExpress bulk orders for 50-70% cost reduction ($8-12 kit)
Cost Comparison Example (10-node temperature monitoring) | Source | Per-Node Cost | Total Cost | Shipping | Lead Time | Quality | |βββ|βββββ|ββββ|βββ-|ββββ|βββ| | Adafruit | $35 | $350 | $15 | 3-5 days | Excellent | | Amazon | $22 | $220 | Free | 2-3 days | Good | | AliExpress | $12 | $120 | $20 | 3-4 weeks | Variable |
Hidden Costs to Budget: - Enclosures: $5-30 per node depending on IP rating - Installation Labor: $20-100 per node for mounting, wiring - Gateway/Hub: $50-200 (1 per site for LoRaWAN) - Annual Maintenance: 10-15% of hardware cost - Cloud/Data: $5-50/month depending on data volume
βI need to monitorβ¦β
β Parking spaces (city-wide) β Hardware: ESP32 + PNI RM3100 magnetic + LoRaWAN RFM95 + 5-year battery β Cost: ~$90/space | Range: 10 km | Life: 5-10 years
β Soil moisture (farm, 50 locations) β Hardware: ESP32 + 4Γ capacitive sensors + LoRaWAN + solar β Cost: ~$60/node | Range: 5 km | Life: 5+ years (solar)
β Home energy usage β Hardware: ESP32 + 3Γ SCT-013 CT clamps + Wi-Fi β Cost: ~$45 total | Range: 50m (Wi-Fi) | Life: Mains powered
β Heart rate (wearable) β Hardware: nRF52840 + MAX30102 + 250mAh battery + BLE β Cost: ~$35 | Range: 10m (BLE) | Life: 7-14 days/charge
β Machine vibration (factory, 20 machines) β Hardware: STM32 + ADXL345 + Modbus RS485 + 24V DC β Cost: ~$55/machine | Range: 1 km (wired) | Life: Industrial-grade
β Air quality (neighborhood, 10 locations) β Hardware: ESP32 + PMS5003 + MH-Z19 + BME680 + solar β Cost: ~$150/node | Range: Wi-Fi/LoRaWAN | Life: 5+ years
Not sure? Use the Sensor Selection Wizard below to get personalized recommendations!
518.2 Mermaid Diagrams
518.2.1 Sensor Application Domain Hierarchy
This layered view categorizes sensors by criticality level - from safety-critical to convenience - helping you understand different reliability and accuracy requirements.
%%{init: {'theme': 'base', 'themeVariables': { 'primaryColor': '#2C3E50', 'primaryTextColor': '#fff', 'primaryBorderColor': '#16A085', 'lineColor': '#16A085', 'secondaryColor': '#E67E22', 'tertiaryColor': '#ECF0F1', 'fontSize': '11px'}}}%%
flowchart TB
subgraph L1["SAFETY-CRITICAL (Failure = Harm)"]
S1["Medical: SpO2, ECG, Blood Glucose"]
S2["Industrial: Gas leak, Radiation"]
S3["Automotive: Collision, Tire pressure"]
REQ1["Requirements: Redundancy, Certification, Real-time"]
end
subgraph L2["OPERATIONAL (Failure = Downtime)"]
O1["Industrial: Vibration, Temperature"]
O2["Agriculture: Soil moisture, pH"]
O3["Building: HVAC, Occupancy"]
REQ2["Requirements: Accuracy, Reliability, 99%+ uptime"]
end
subgraph L3["INFORMATIONAL (Failure = Inconvenience)"]
I1["Smart Home: Motion, Light levels"]
I2["Wearables: Step count, Sleep"]
I3["Environment: Weather, Air quality"]
REQ3["Requirements: Cost-effective, Good-enough accuracy"]
end
L1 --> L2
L2 --> L3
style L1 fill:#E67E22,stroke:#2C3E50
style L2 fill:#16A085,stroke:#2C3E50
style L3 fill:#7F8C8D,stroke:#2C3E50
%%{init: {'theme':'base', 'themeVariables': {'primaryColor':'#2C3E50','primaryTextColor':'#fff','primaryBorderColor':'#16A085','lineColor':'#16A085','secondaryColor':'#E67E22','tertiaryColor':'#ECF0F1','fontSize':'10px'}}}%%
flowchart TB
subgraph smartcity["SMART CITY"]
SC1["Ultrasonic β Parking spots"]
SC2["Camera β Traffic counting"]
SC3["PM2.5 β Air quality"]
SC4["LDR β Street light control"]
end
subgraph health["HEALTHCARE"]
H1["PPG β Heart rate"]
H2["Accelerometer β Fall detection"]
H3["Temperature β Fever monitoring"]
H4["SpO2 β Oxygen saturation"]
end
subgraph agri["AGRICULTURE"]
A1["Soil moisture β Irrigation"]
A2["DHT22 β Greenhouse climate"]
A3["pH sensor β Soil health"]
A4["GPS β Livestock tracking"]
end
subgraph industry["INDUSTRIAL"]
I1["Vibration β Predictive maintenance"]
I2["Current clamp β Energy monitoring"]
I3["Thermocouple β High-temp process"]
I4["Flow meter β Production rate"]
end
style smartcity fill:#E3F2FD,stroke:#2C3E50
style health fill:#FCE4EC,stroke:#E91E63
style agri fill:#E8F5E9,stroke:#16A085
style industry fill:#FFF3E0,stroke:#E67E22
{fig-alt=βIoT application diagram showing key components and relationships illustrating sensor-application mapping, industry use cases, deployment scenarios, or system architecture for real-world IoT solutions across different application domains.β}
518.2.2 Sensor Selection Decision Tree
%%{init: {'theme':'base', 'themeVariables': {'primaryColor':'#2C3E50','primaryTextColor':'#fff','primaryBorderColor':'#16A085','lineColor':'#16A085','secondaryColor':'#E67E22','tertiaryColor':'#ECF0F1','fontSize':'13px'}}}%%
flowchart TD
Start[Sensor Selection<br/>for Application]
Q1{Indoor or<br/>Outdoor?}
Q2{Battery<br/>powered?}
Q3{Real-time<br/>data needed?}
Q4{Budget per<br/>sensor?}
Indoor[Indoor Deployment]
Outdoor[Outdoor Deployment]
Wi-Fi[Wi-Fi Sensors<br/>ESP32-based]
BLE[BLE Beacons<br/>Ultra low power]
LoRa[LoRaWAN Sensors<br/>Long range]
Cellular[Cellular IoT<br/>NB-IoT/LTE-M]
Wired[Wired Sensors<br/>Modbus/RS485]
Start --> Q1
Q1 -->|Indoor| Q2
Q1 -->|Outdoor| Q3
Q2 -->|Yes| BLE
Q2 -->|No| Wi-Fi
Q3 -->|Yes| Cellular
Q3 -->|No| Q4
Q4 -->|Low <$50| LoRa
Q4 -->|High >$50| Wired
style Start fill:#2C3E50,stroke:#16A085,color:#fff
style Q1 fill:#E67E22,stroke:#2C3E50,color:#fff
style Q2 fill:#E67E22,stroke:#2C3E50,color:#fff
style Q3 fill:#E67E22,stroke:#2C3E50,color:#fff
style Q4 fill:#E67E22,stroke:#2C3E50,color:#fff
style Wi-Fi fill:#16A085,stroke:#2C3E50,color:#fff
style BLE fill:#16A085,stroke:#2C3E50,color:#fff
style LoRa fill:#16A085,stroke:#2C3E50,color:#fff
style Cellular fill:#16A085,stroke:#2C3E50,color:#fff
style Wired fill:#16A085,stroke:#2C3E50,color:#fff
{fig-alt=βIoT application diagram showing Sensor Selection for Application, Indoor Deployment, Outdoor Deployment illustrating sensor-application mapping, industry use cases, deployment scenarios, or system architecture for real-world IoT solutions across different application domains.β}
518.2.3 Data Flow Architecture
%%{init: {'theme':'base', 'themeVariables': {'primaryColor':'#2C3E50','primaryTextColor':'#fff','primaryBorderColor':'#16A085','lineColor':'#16A085','secondaryColor':'#E67E22','tertiaryColor':'#ECF0F1','fontSize':'13px'}}}%%
flowchart LR
Sensors[Sensor Layer<br/>DHT22, BMP280<br/>PIR, LDR, etc.]
Gateway[Gateway/Edge<br/>ESP32/Raspberry Pi<br/>Data aggregation]
Network[Network Layer<br/>Wi-Fi/LoRaWAN<br/>Cellular/Ethernet]
Cloud[Cloud Platform<br/>AWS IoT/Azure IoT<br/>ThingSpeak/Blynk]
Analytics[Analytics Layer<br/>Data processing<br/>ML/AI inference]
App[Application Layer<br/>Web dashboard<br/>Mobile app<br/>Alerts]
Sensors -->|Raw data| Gateway
Gateway -->|Filtered data| Network
Network -->|MQTT/HTTP| Cloud
Cloud -->|Batch/Stream| Analytics
Analytics -->|Insights| App
App -.->|Control commands| Gateway
style Sensors fill:#2C3E50,stroke:#16A085,color:#fff
style Gateway fill:#E67E22,stroke:#2C3E50,color:#fff
style Network fill:#E67E22,stroke:#2C3E50,color:#fff
style Cloud fill:#16A085,stroke:#2C3E50,color:#fff
style Analytics fill:#16A085,stroke:#2C3E50,color:#fff
style App fill:#27ae60,stroke:#2C3E50,color:#fff
{fig-alt=βIoT application diagram showing Sensor Layer DHT22, BMP280 PIR, LDR, etc., Gateway/Edge ESP32/Raspberry Pi Data aggregation, Network Layer Wi-Fi/LoRaWAN Cellular/Ethernet illustrating sensor-application mapping, industry use cases, deployment scenarios, or system architecture for real-world IoT solutions across different application domains.β}
518.2.4 Sensor Usage Statistics
%%{init: {'theme':'base', 'themeVariables': {'primaryColor':'#2C3E50','primaryTextColor':'#fff','primaryBorderColor':'#16A085','lineColor':'#16A085','secondaryColor':'#E67E22','tertiaryColor':'#ECF0F1','fontSize':'14px'}}}%%
pie title Most Common IoT Sensors by Application Volume
"Temperature" : 28
"Motion/Proximity" : 22
"Light/Color" : 15
"Humidity" : 12
"Pressure/Altitude" : 10
"Acceleration/Gyro" : 8
"Gas/Air Quality" : 5
{fig-alt=βIoT application diagram showing key components and relationships illustrating sensor-application mapping, industry use cases, deployment scenarios, or system architecture for real-world IoT solutions across different application domains.β}
518.2.5 Sensor Type Comparison by Application
%%{init: {'theme':'base', 'themeVariables': {'primaryColor':'#2C3E50','primaryTextColor':'#fff','primaryBorderColor':'#16A085','lineColor':'#16A085','secondaryColor':'#E67E22','tertiaryColor':'#ECF0F1','fontSize':'12px'}}}%%
graph LR
subgraph Smart_Cities["ποΈ Smart Cities"]
SC1[Smart Parking<br/>Magnetic Field]
SC2[Traffic<br/>Magnetic + Camera]
SC3[Air Quality<br/>Gas Sensors]
SC4[Lighting<br/>LDR + PIR]
end
subgraph Agriculture["πΎ Agriculture"]
AG1[Soil Moisture<br/>Capacitive]
AG2[Weather<br/>Temp/Humid/Press]
AG3[Livestock<br/>GPS + RFID]
AG4[Irrigation<br/>Flow + Soil]
end
subgraph Healthcare["β€οΈ Healthcare"]
HC1[Heart Rate<br/>Optical PPG]
HC2[Fall Detection<br/>Accelerometer]
HC3[Temperature<br/>IR Thermometer]
HC4[Activity<br/>IMU Fusion]
end
subgraph Industrial["π Industrial"]
IN1[Vibration<br/>Accelerometer]
IN2[Temperature<br/>Thermocouple]
IN3[Current<br/>CT Clamps]
IN4[Position<br/>Encoder/Hall]
end
subgraph Environment["π Environment"]
EN1[Air Quality<br/>PM2.5/CO2/VOC]
EN2[Water Quality<br/>pH/DO/Turbidity]
EN3[Noise<br/>MEMS Microphone]
EN4[Seismic<br/>High-g Accel]
end
style Smart_Cities fill:#2C3E50,stroke:#16A085,color:#fff
style Agriculture fill:#E67E22,stroke:#2C3E50,color:#fff
style Healthcare fill:#e74c3c,stroke:#2C3E50,color:#fff
style Industrial fill:#7F8C8D,stroke:#2C3E50,color:#fff
style Environment fill:#16A085,stroke:#2C3E50,color:#fff
style SC1 fill:#ECF0F1,stroke:#2C3E50,color:#000
style SC2 fill:#ECF0F1,stroke:#2C3E50,color:#000
style SC3 fill:#ECF0F1,stroke:#2C3E50,color:#000
style SC4 fill:#ECF0F1,stroke:#2C3E50,color:#000
style AG1 fill:#ECF0F1,stroke:#E67E22,color:#000
style AG2 fill:#ECF0F1,stroke:#E67E22,color:#000
style AG3 fill:#ECF0F1,stroke:#E67E22,color:#000
style AG4 fill:#ECF0F1,stroke:#E67E22,color:#000
style HC1 fill:#ECF0F1,stroke:#e74c3c,color:#000
style HC2 fill:#ECF0F1,stroke:#e74c3c,color:#000
style HC3 fill:#ECF0F1,stroke:#e74c3c,color:#000
style HC4 fill:#ECF0F1,stroke:#e74c3c,color:#000
style IN1 fill:#ECF0F1,stroke:#7F8C8D,color:#000
style IN2 fill:#ECF0F1,stroke:#7F8C8D,color:#000
style IN3 fill:#ECF0F1,stroke:#7F8C8D,color:#000
style IN4 fill:#ECF0F1,stroke:#7F8C8D,color:#000
style EN1 fill:#ECF0F1,stroke:#16A085,color:#000
style EN2 fill:#ECF0F1,stroke:#16A085,color:#000
style EN3 fill:#ECF0F1,stroke:#16A085,color:#000
style EN4 fill:#ECF0F1,stroke:#16A085,color:#000
{fig-alt=βIoT application diagram showingβποΈ Smart Citiesβ, Smart Parking Magnetic Field, Traffic Magnetic + Camera illustrating sensor-application mapping, industry use cases, deployment scenarios, or system architecture for real-world IoT solutions across different application domains.β}
518.2.6 Sensor Deployment Lifecycle
%%{init: {'theme':'base', 'themeVariables': {'primaryColor':'#2C3E50','primaryTextColor':'#fff','primaryBorderColor':'#16A085','lineColor':'#16A085','secondaryColor':'#E67E22','tertiaryColor':'#ECF0F1','fontSize':'13px'}}}%%
flowchart TD
Start([Sensor Application<br/>Project Start])
Requirements[Requirements Analysis<br/>- Application domain<br/>- Coverage area<br/>- Accuracy needs<br/>- Budget constraints]
Selection[Sensor Selection<br/>- Type matching<br/>- Power budget<br/>- Cost analysis<br/>- Protocol choice]
Design[System Design<br/>- Network topology<br/>- Gateway placement<br/>- Data flow<br/>- Edge processing]
Prototype[Prototype & Test<br/>- Small deployment<br/>- Validate coverage<br/>- Test connectivity<br/>- Measure performance]
Optimize{Performance<br/>Acceptable?}
Deploy[Full Deployment<br/>- Install sensors<br/>- Configure network<br/>- Calibrate sensors<br/>- Test end-to-end]
Monitor[Operations & Monitor<br/>- Data collection<br/>- Alert management<br/>- Performance tracking<br/>- Battery monitoring]
Maintain[Maintenance<br/>- Calibration<br/>- Battery replacement<br/>- Firmware updates<br/>- Issue resolution]
Evaluate{System<br/>Health OK?}
Scale[Scale & Expand<br/>- Add sensors<br/>- New locations<br/>- Additional types]
End([Continuous<br/>Operation])
Start --> Requirements
Requirements --> Selection
Selection --> Design
Design --> Prototype
Prototype --> Optimize
Optimize -->|No| Selection
Optimize -->|Yes| Deploy
Deploy --> Monitor
Monitor --> Maintain
Maintain --> Evaluate
Evaluate -->|Issues| Maintain
Evaluate -->|Good| Monitor
Monitor -.->|Expansion needed| Scale
Scale --> Deploy
Monitor --> End
style Start fill:#2C3E50,stroke:#16A085,color:#fff
style End fill:#27ae60,stroke:#16A085,color:#fff
style Requirements fill:#E67E22,stroke:#2C3E50,color:#fff
style Selection fill:#E67E22,stroke:#2C3E50,color:#fff
style Design fill:#E67E22,stroke:#2C3E50,color:#fff
style Prototype fill:#16A085,stroke:#2C3E50,color:#fff
style Deploy fill:#16A085,stroke:#2C3E50,color:#fff
style Monitor fill:#3498db,stroke:#2C3E50,color:#fff
style Maintain fill:#3498db,stroke:#2C3E50,color:#fff
style Optimize fill:#f39c12,stroke:#2C3E50,color:#000
style Evaluate fill:#f39c12,stroke:#2C3E50,color:#000
style Scale fill:#9b59b6,stroke:#2C3E50,color:#fff
{fig-alt=βIoT application diagram showing Sensor Application Project Start, Requirements Analysis - Application domain - Coverage area - Accuracy needs - Budget constraints, Sensor Selection - Type matching - Power budget - Cost analysis - Protocol choice illustrating sensor-application mapping, industry use cases, deployment scenarios, or system architecture for real-world IoT solutions across different application domains.β}
518.3 Hands-On Labs
518.4 Whatβs Next
Apply your hardware selection knowledge in hands-on labs with real-world deployment scenarios, or return to sensor application domains to review use cases.