%%{init: {'theme': 'base', 'themeVariables': {'primaryColor': '#E8F4F8', 'primaryTextColor': '#2C3E50', 'primaryBorderColor': '#16A085', 'lineColor': '#16A085', 'secondaryColor': '#FEF5E7', 'tertiaryColor': '#FDEBD0'}}}%%
flowchart TD
Start([Start]) --> Range{Range needed?}
Range -->|< 10m| Touch{Touch required?}
Range -->|10-100m| Building{Power source?}
Range -->|100m-1km| Campus{Licensed spectrum?}
Range -->|> 1km| Wide{Mobility needed?}
Touch -->|Yes| NFC[NFC]
Touch -->|No| BLE1[BLE]
Building -->|Battery| Mesh{Mesh needed?}
Building -->|Mains| BW{High bandwidth?}
Mesh -->|Yes| ZT[Zigbee/Thread]
Mesh -->|No| BLE2[BLE]
BW -->|Yes| Wi-Fi[Wi-Fi]
BW -->|No| ZT2[Zigbee/Thread]
Campus -->|No| LoRa[LoRaWAN]
Campus -->|Yes| NBIoT[NB-IoT]
Wide -->|Yes| LTEM[LTE-M]
Wide -->|No| LPWAN{Budget?}
LPWAN -->|Low| Sigfox[Sigfox]
LPWAN -->|Flexible| LoRa2[LoRaWAN]
style Start fill:#2C3E50,stroke:#16A085,color:#fff
style NFC fill:#16A085,stroke:#2C3E50,color:#fff
style BLE1 fill:#16A085,stroke:#2C3E50,color:#fff
style BLE2 fill:#16A085,stroke:#2C3E50,color:#fff
style ZT fill:#16A085,stroke:#2C3E50,color:#fff
style ZT2 fill:#16A085,stroke:#2C3E50,color:#fff
style Wi-Fi fill:#E67E22,stroke:#2C3E50,color:#fff
style LoRa fill:#2C3E50,stroke:#16A085,color:#fff
style LoRa2 fill:#2C3E50,stroke:#16A085,color:#fff
style NBIoT fill:#E67E22,stroke:#2C3E50,color:#fff
style LTEM fill:#E67E22,stroke:#2C3E50,color:#fff
style Sigfox fill:#2C3E50,stroke:#16A085,color:#fff
87 Protocol Decision Frameworks
Visual Decision Trees and Reference Matrices for Protocol Selection
87.1 Decision Framework Reference
NoteLearning Objectives
By studying these decision frameworks, you will be able to:
- Navigate decision trees to quickly identify suitable protocols based on range and power needs
- Map use cases to protocols using scenario-based selection guides
- Understand protocol trade-offs through visual power/range matrices
- Apply quick decision rules for common IoT deployment scenarios
87.2 Prerequisites
Before using these frameworks, you should understand:
- Protocol Selector Overview: Introduction to protocol selection concepts
- IoT Protocols Overview: Basic understanding of IoT protocol categories
87.3 Quick Decision Guide
TipQuick Decision Guide
Use this flowchart when you need a quick protocol decision:
| If you need… | And also need… | Consider… |
|---|---|---|
| Long range (km) | Battery (years) | LoRaWAN, Sigfox, NB-IoT |
| Long range (km) | Low latency | LTE-M, 5G |
| Short range (m) | High bandwidth | Wi-Fi |
| Short range (m) | Battery life | BLE, Zigbee, Thread |
| Mesh networking | Low power | Zigbee, Thread |
| Mesh networking | IP-native | Thread |
| Touch range | Instant | NFC |
| No battery | Tracking | UHF RFID |
87.4 Protocol Decision Flowchart
87.4.1 How to Use This Flowchart
- Start with Range: Your communication distance is typically the strongest constraint
- Consider Power: Battery-powered devices eliminate high-power protocols
- Evaluate Topology: Mesh networks offer flexibility but add complexity
- Check Bandwidth: Video and audio require high-bandwidth protocols
- Factor Mobility: Moving devices need handoff-capable protocols
87.5 Scenario-Based Protocol Mapping
%%{init: {'theme': 'base', 'themeVariables': {'primaryColor': '#2C3E50', 'primaryTextColor': '#fff', 'primaryBorderColor': '#16A085', 'lineColor': '#7F8C8D', 'secondaryColor': '#E67E22', 'tertiaryColor': '#16A085'}}}%%
flowchart LR
subgraph SCENARIO["Common IoT Scenarios"]
direction TB
S1["Smart Home"]
S2["Industrial Monitoring"]
S3["Asset Tracking"]
S4["Smart Agriculture"]
S5["Wearables"]
S6["Video Surveillance"]
end
subgraph PRIMARY["Primary Protocol Choice"]
direction TB
P1["Thread/Zigbee"]
P2["Wi-Fi/Ethernet"]
P3["LTE-M/LoRaWAN"]
P4["LoRaWAN/NB-IoT"]
P5["BLE"]
P6["Wi-Fi/5G"]
end
subgraph FALLBACK["Fallback Options"]
direction TB
F1["BLE, Wi-Fi"]
F2["5G, NB-IoT"]
F3["Sigfox, NB-IoT"]
F4["Sigfox, LTE-M"]
F5["NFC, Thread"]
F6["LTE-M, Ethernet"]
end
S1 --> P1 --> F1
S2 --> P2 --> F2
S3 --> P3 --> F3
S4 --> P4 --> F4
S5 --> P5 --> F5
S6 --> P6 --> F6
style SCENARIO fill:#2C3E50,stroke:#16A085,stroke-width:2px,color:#fff
style PRIMARY fill:#16A085,stroke:#2C3E50,stroke-width:2px,color:#fff
style FALLBACK fill:#E67E22,stroke:#2C3E50,stroke-width:2px,color:#fff
style S1 fill:#7F8C8D,stroke:#2C3E50,color:#fff
style S2 fill:#7F8C8D,stroke:#2C3E50,color:#fff
style S3 fill:#7F8C8D,stroke:#2C3E50,color:#fff
style S4 fill:#7F8C8D,stroke:#2C3E50,color:#fff
style S5 fill:#7F8C8D,stroke:#2C3E50,color:#fff
style S6 fill:#7F8C8D,stroke:#2C3E50,color:#fff
87.5.1 Scenario Details
| Scenario | Why Primary | When to Use Fallback |
|---|---|---|
| Smart Home | Thread/Zigbee offer mesh reliability and Matter compatibility | BLE for wearable integration, Wi-Fi for cameras |
| Industrial Monitoring | Wi-Fi/Ethernet provide bandwidth and reliability for factory floors | 5G for mobile robots, NB-IoT for remote sites |
| Asset Tracking | LTE-M offers mobility support; LoRaWAN for fixed assets | Sigfox for simple telemetry, NB-IoT for indoor coverage |
| Smart Agriculture | LoRaWAN reaches across large farms without infrastructure | NB-IoT where cellular exists, Sigfox for simple sensors |
| Wearables | BLE is optimized for smartphone connectivity and low power | NFC for payments, Thread for smart home integration |
| Video Surveillance | Wi-Fi/5G handle bandwidth requirements | LTE-M for mobile cameras, Ethernet for permanent installations |
87.6 Power and Range Matrix
%%{init: {'theme': 'base', 'themeVariables': {'primaryColor': '#2C3E50', 'primaryTextColor': '#fff', 'primaryBorderColor': '#16A085', 'lineColor': '#16A085', 'secondaryColor': '#E67E22', 'tertiaryColor': '#7F8C8D'}}}%%
graph TB
subgraph LOW_POWER["Ultra-Low Power (Years on Battery)"]
direction LR
LP1["NFC<br/>Touch range"]
LP2["BLE<br/>10-100m"]
LP3["LoRaWAN<br/>2-15 km"]
LP4["Sigfox<br/>3-50 km"]
end
subgraph MED_POWER["Low-Medium Power (Months on Battery)"]
direction LR
MP1["Zigbee<br/>10-100m mesh"]
MP2["Thread<br/>10-100m mesh"]
MP3["NB-IoT<br/>1-35 km"]
MP4["LTE-M<br/>1-35 km"]
end
subgraph HIGH_POWER["High Power (Mains/Frequent Charge)"]
direction LR
HP1["Wi-Fi<br/>10-100m"]
HP2["5G<br/>100m-10 km"]
HP3["Ethernet<br/>100m wired"]
end
SHORT["Short Range<br/>(< 100m)"]
LONG["Long Range<br/>(> 1 km)"]
LP1 --> SHORT
LP2 --> SHORT
MP1 --> SHORT
MP2 --> SHORT
HP1 --> SHORT
HP3 --> SHORT
LP3 --> LONG
LP4 --> LONG
MP3 --> LONG
MP4 --> LONG
HP2 --> LONG
style LOW_POWER fill:#16A085,stroke:#2C3E50,stroke-width:2px,color:#fff
style MED_POWER fill:#E67E22,stroke:#2C3E50,stroke-width:2px,color:#fff
style HIGH_POWER fill:#2C3E50,stroke:#16A085,stroke-width:2px,color:#fff
style SHORT fill:#7F8C8D,stroke:#2C3E50,stroke-width:2px,color:#fff
style LONG fill:#7F8C8D,stroke:#2C3E50,stroke-width:2px,color:#fff
87.6.1 Understanding the Matrix
Ultra-Low Power (Teal): These protocols enable 5-10 year battery life through aggressive duty cycling and minimal transmit power.
- NFC: Passive operation, power harvested from reader
- BLE: Designed for coin cell batteries, excellent sleep modes
- LoRaWAN: Long sleep periods, brief transmissions
- Sigfox: Extreme simplicity, minimal on-air time
Low-Medium Power (Orange): These protocols balance functionality with battery life, typically supporting months of operation.
- Zigbee: Router nodes need power; end devices can sleep
- Thread: Similar to Zigbee but with IP overhead
- NB-IoT: Cellular efficiency modes (PSM, eDRX)
- LTE-M: Higher bandwidth means higher power than NB-IoT
High Power (Navy): These protocols require mains power or frequent charging but offer maximum capability.
- Wi-Fi: Always-on connectivity, high throughput
- 5G: Maximum bandwidth and minimum latency
- Ethernet: Highest reliability, often with PoE
87.7 Protocol Selection Quick Reference
TipProtocol Selection Quick Reference
Use this table while making protocol decisions:
| Constraint | Best Protocols | Why |
|---|---|---|
| Years on battery | LoRaWAN, Sigfox, BLE | Ultra-low power duty cycles |
| Sub-10ms latency | 5G, Ethernet, Wi-Fi | Low-latency by design |
| Tiny MCU (< 64KB) | CoAP, LwM2M | Minimal code footprint |
| Self-healing mesh | Zigbee, Thread, Z-Wave | Automatic route discovery |
| 5+ km range | LoRaWAN, NB-IoT, Sigfox | LPWAN technologies |
| HD video streaming | Wi-Fi, 5G, Ethernet | High bandwidth capacity |
| Touch-based | NFC | Inherent proximity security |
| Passive tags | UHF RFID | No battery required |
87.8 Protocol Comparison by Category
87.8.1 Short-Range Protocols (< 100m)
| Protocol | Range | Data Rate | Power | Best For |
|---|---|---|---|---|
| BLE | 10-100m | 125 kbps - 2 Mbps | Ultra-low | Wearables, beacons |
| Wi-Fi | 10-100m | 11 Mbps - 1 Gbps | High | Cameras, gateways |
| Zigbee | 10-100m | 20-250 kbps | Low | Smart home, sensors |
| Thread | 10-100m | 20-250 kbps | Low | Matter devices |
| Z-Wave | 30-100m | 10-100 kbps | Low | Security, HVAC |
87.8.2 Long-Range Protocols (> 1km)
| Protocol | Range | Data Rate | Power | Best For |
|---|---|---|---|---|
| LoRaWAN | 2-15 km | 0.3-50 kbps | Ultra-low | Agriculture, utilities |
| Sigfox | 3-50 km | 0.1-0.6 kbps | Ultra-low | Simple telemetry |
| NB-IoT | 1-35 km | 20-250 kbps | Low | Smart meters |
| LTE-M | 1-35 km | 375 kbps - 1 Mbps | Medium | Fleet tracking |
| 5G | 100m-10 km | 1 Mbps - 10 Gbps | High | Industrial, AR/VR |
87.8.3 Special Purpose Protocols
| Protocol | Range | Data Rate | Power | Best For |
|---|---|---|---|---|
| NFC | < 10cm | 106-424 kbps | Ultra-low | Payments, pairing |
| UHF RFID | 0-12m | 40-640 kbps | Passive | Inventory tracking |
| Ethernet | 100m | 10 Mbps - 10 Gbps | N/A | Industrial backbone |
87.9 Summary
These decision frameworks provide multiple approaches to protocol selection:
- Decision Flowchart: Navigate step-by-step based on requirements
- Scenario Mapping: Jump directly from use case to protocol recommendation
- Power/Range Matrix: Visualize trade-offs between two key constraints
- Quick Reference Tables: Fast lookup for specific requirements
NoteKey Takeaways
- Range is the primary filter - Start by eliminating protocols that cannot meet your distance requirements
- Power drives battery life - Ultra-low power protocols enable years of operation
- Bandwidth limits applications - Video and audio require high-bandwidth protocols
- Consider fallback options - Always have a secondary protocol in mind
- Match protocol to scenario - Use scenario mapping for quick decisions
87.10 What’s Next
- Interactive Wizard: Get personalized protocol recommendations
- Protocol Matching Game: Test your protocol selection knowledge
- Protocol Selector Overview: Return to the main wizard hub
- Architecture Planner: Design your complete IoT system