%%{init: {'theme': 'base', 'themeVariables': { 'primaryColor': '#2C3E50', 'primaryTextColor': '#fff', 'primaryBorderColor': '#16A085', 'lineColor': '#16A085', 'secondaryColor': '#E67E22', 'tertiaryColor': '#ecf0f1'}}}%%
flowchart TB
subgraph Device["Device Layer (Edge)"]
D1[IoT Device 1<br/>Sensor Data] --> EG1[Edge Gateway]
D2[IoT Device 2<br/>Sensor Data] --> EG1
D3[IoT Device 3<br/>Sensor Data] --> EG2[Edge Gateway]
D4[IoT Device 4<br/>Sensor Data] --> EG2
end
subgraph Fog["Fog Layer (Intermediate)"]
EG1 --> FN1[Fog Node<br/>Aggregation]
EG2 --> FN1
EG1 --> FN2[Fog Node<br/>Processing]
FN1 --> FN2
end
subgraph Cloud["Cloud Layer (Centralized)"]
FN2 --> CS[Cloud Storage]
CS --> CA[Cloud Analytics]
CA --> BD[Big Data<br/>Processing]
end
style EG1 fill:#2C3E50,stroke:#16A085,color:#fff
style EG2 fill:#2C3E50,stroke:#16A085,color:#fff
style FN1 fill:#16A085,stroke:#2C3E50,color:#fff
style FN2 fill:#16A085,stroke:#2C3E50,color:#fff
style CS fill:#E67E22,stroke:#2C3E50,color:#fff
style CA fill:#E67E22,stroke:#2C3E50,color:#fff
style BD fill:#E67E22,stroke:#2C3E50,color:#fff
1334 Edge Review: Architecture Patterns and Decision Frameworks
1334.1 Learning Objectives
By the end of this chapter, you will be able to:
- Identify Architecture Patterns: Distinguish between edge, fog, and cloud computing tiers and their roles
- Apply Decision Frameworks: Use structured decision trees to select optimal processing locations
- Evaluate Trade-offs: Assess latency, bandwidth, privacy, and cost trade-offs for different architectures
- Match Use Cases: Map IoT application requirements to appropriate architectural patterns
- Compare Massive vs Critical IoT: Understand the distinct requirements of high-volume delay-tolerant versus low-latency mission-critical deployments
1334.2 Prerequisites
Required Reading: - Edge Compute Patterns - Edge computing basics - Edge Comprehensive Review - Full review
Related Chapters: - Edge Review: Calculations - Formulas and practice problems - Edge Review: Deployments - Real-world patterns
TipFor Beginners: Why Architecture Matters
Think of IoT architecture like choosing where to cook a meal:
- Edge (your kitchen): Fast, private, but limited equipment
- Fog (neighborhood restaurant): More equipment, serves multiple homes
- Cloud (factory kitchen): Massive scale, can serve thousands, but delivery takes time
The right choice depends on what you are cooking (your data), how quickly you need it (latency), and how many people you are serving (scale). This chapter helps you make that choice systematically.
1334.3 Core Concepts Summary
1334.3.1 Edge Computing Terminology
| Concept | Definition | Key Characteristics |
|---|---|---|
| Edge Computing | Processing data near its source (IoT devices) | Low latency (<10ms), reduced bandwidth, local autonomy |
| Fog Computing | Intermediate layer between edge and cloud | Aggregation, preprocessing, hierarchical architecture |
| Cloudlet | Small-scale data center at network edge | VM-based edge services, mobile edge computing |
| MEC (Multi-access Edge Computing) | Telco edge infrastructure at cell towers | 5G integration, ultra-low latency, operator-managed |
| Edge Gateway | IoT Reference Model Level 3 | Evaluate, format, reduce data before cloud |
| Data in Motion | Streaming data from devices (Levels 1-3) | Event-driven, real-time processing |
| Data at Rest | Stored data in databases (Level 4+) | Batch processing, historical analysis |
1334.3.2 IoT Reference Model Four Levels
| Level | Name | Function | Processing Type |
|---|---|---|---|
| Level 1 | Physical Devices & Controllers | Sensors, actuators, embedded systems | Local sensing, basic control |
| Level 2 | Connectivity | Communication protocols, gateways | Reliable data transport |
| Level 3 | Edge Computing | Data reduction, filtering, formatting | Real-time preprocessing |
| Level 4 | Data Accumulation | Storage systems, databases | Long-term storage, batch analytics |
1334.3.3 Edge Gateway Three Functions (EFR Model)
| Function | Purpose | Examples |
|---|---|---|
| Evaluate | Filter low-quality or invalid data | Discard out-of-range values, check sensor health |
| Format | Standardize data for cloud ingestion | Convert units, normalize timestamps, add metadata |
| Reduce (Distill) | Minimize data volume before transmission | Downsample, aggregate, compute statistics |
1334.4 Edge vs Cloud Decision Matrix
1334.4.1 Architectural Trade-offs
| Factor | Edge | Cloud | Hybrid |
|---|---|---|---|
| Latency | <10ms (local) | 50-200ms (network delay) | Variable (critical=edge, batch=cloud) |
| Bandwidth Cost | Low (minimal WAN traffic) | High (continuous uploads) | Medium (selective sync) |
| Processing Power | Limited (constrained devices) | Unlimited (elastic scaling) | Flexible (offload when needed) |
| Data Privacy | Local (stays on-premise) | Concerns (third-party servers) | Selective (sensitive=edge) |
| Maintenance | Distributed (physical access) | Centralized (remote updates) | Complex (dual management) |
| Storage Capacity | Limited (local disks) | Petabyte-scale | Tiered (hot=edge, cold=cloud) |
| Reliability | Single point of failure | Redundant infrastructure | Failover capability |
| Cost Model | CapEx (upfront hardware) | OpEx (pay-as-you-go) | Mixed |
1334.4.2 Use Case Suitability
| Application | Best Architecture | Justification |
|---|---|---|
| Autonomous Vehicles | Edge-heavy | <10ms latency required for safety, no cloud dependency |
| Predictive Maintenance | Hybrid | Edge for anomaly detection, cloud for fleet-wide trends |
| Smart Home | Edge-heavy | Privacy, works during internet outages |
| Video Surveillance | Hybrid | Edge for motion detection, cloud for long-term storage |
| Agricultural Monitoring | Hybrid | Edge for irrigation control, cloud for historical analysis |
| Industrial Safety | Edge-heavy | Real-time shutdowns, no network dependency |
| Customer Analytics | Cloud-heavy | Aggregate across locations, complex ML models |
| Energy Optimization | Hybrid | Edge for load balancing, cloud for demand forecasting |
1334.5 Architecture Patterns
1334.5.1 Hierarchical Edge-Fog-Cloud Architecture
1334.5.2 Alternative View: Processing Decision Tree
%%{init: {'theme': 'base', 'themeVariables': { 'primaryColor': '#2C3E50', 'primaryTextColor': '#fff', 'primaryBorderColor': '#16A085', 'lineColor': '#16A085', 'secondaryColor': '#E67E22', 'tertiaryColor': '#7F8C8D'}}}%%
flowchart TD
Start[IoT Data<br/>Processing Decision] --> Q1{Latency<br/>Requirement?}
Q1 -->|< 10ms Critical| Edge[Process at Edge]
Q1 -->|10-100ms| Fog[Process at Fog]
Q1 -->|> 100ms OK| Cloud[Process in Cloud]
Edge --> E1[Local control loops<br/>Safety shutdowns<br/>Real-time response]
Fog --> F1[Regional aggregation<br/>Floor-level analytics<br/>Moderate compute]
Cloud --> C1[Historical analytics<br/>ML model training<br/>Fleet-wide trends]
E1 --> Cost1[CapEx: Hardware<br/>Latency: 1-5ms<br/>Bandwidth: Minimal]
F1 --> Cost2[Mixed: Hardware + Cloud<br/>Latency: 10-50ms<br/>Bandwidth: Medium]
C1 --> Cost3[OpEx: Pay-per-use<br/>Latency: 50-200ms<br/>Bandwidth: High]
style Edge fill:#16A085,stroke:#2C3E50,color:#fff
style Fog fill:#E67E22,stroke:#2C3E50,color:#fff
style Cloud fill:#2C3E50,stroke:#16A085,color:#fff
style E1 fill:#16A085,stroke:#2C3E50,color:#fff
style F1 fill:#E67E22,stroke:#2C3E50,color:#fff
style C1 fill:#2C3E50,stroke:#16A085,color:#fff
1334.5.3 Data Reduction Pipeline
%%{init: {'theme': 'base', 'themeVariables': { 'primaryColor': '#2C3E50', 'primaryTextColor': '#fff', 'primaryBorderColor': '#16A085', 'lineColor': '#16A085', 'secondaryColor': '#E67E22', 'tertiaryColor': '#ecf0f1'}}}%%
flowchart LR
Raw[Raw Sensor Data<br/>10,000 samples/hour<br/>4 bytes each<br/>40 KB/hour] --> Eval[Evaluate<br/>Remove invalid<br/>5% filtered<br/>38 KB/hour]
Eval --> Format[Format<br/>Standardize units<br/>Add metadata<br/>38 KB/hour]
Format --> Reduce[Reduce/Distill<br/>Aggregate to<br/>min/max/avg<br/>10 samples/hour]
Reduce --> Output[Output to Cloud<br/>10 samples/hour<br/>40 bytes/hour<br/>1000x reduction]
style Raw fill:#7F8C8D,stroke:#2C3E50,color:#fff
style Eval fill:#2C3E50,stroke:#16A085,color:#fff
style Format fill:#16A085,stroke:#2C3E50,color:#fff
style Reduce fill:#E67E22,stroke:#2C3E50,color:#fff
style Output fill:#27AE60,stroke:#2C3E50,color:#fff
1334.6 Massive IoT vs Critical IoT
%%{init: {'theme': 'base', 'themeVariables': { 'primaryColor': '#2C3E50', 'primaryTextColor': '#fff', 'primaryBorderColor': '#16A085', 'lineColor': '#16A085', 'secondaryColor': '#E67E22', 'tertiaryColor': '#ecf0f1'}}}%%
flowchart TB
subgraph Massive["Massive IoT (High Volume, Delay Tolerant)"]
M1[Millions of devices<br/>Low data rate<br/>Long battery life]
M2[Use Cases:<br/>Smart meters<br/>Asset tracking<br/>Agriculture]
M3[Characteristics:<br/>Latency: seconds-minutes<br/>Reliability: 90-95%<br/>Cost: Ultra-low]
M1 --> M2 --> M3
end
subgraph Critical["Critical IoT (Low Latency, High Reliability)"]
C1[Thousands of devices<br/>High data rate<br/>Always powered]
C2[Use Cases:<br/>Autonomous vehicles<br/>Industrial safety<br/>Remote surgery]
C3[Characteristics:<br/>Latency: <10ms<br/>Reliability: 99.999%<br/>Cost: High]
C1 --> C2 --> C3
end
style M1 fill:#16A085,stroke:#2C3E50,color:#fff
style M2 fill:#16A085,stroke:#2C3E50,color:#fff
style M3 fill:#16A085,stroke:#2C3E50,color:#fff
style C1 fill:#E67E22,stroke:#2C3E50,color:#fff
style C2 fill:#E67E22,stroke:#2C3E50,color:#fff
style C3 fill:#E67E22,stroke:#2C3E50,color:#fff
1334.7 Edge vs Cloud Decision Framework
1334.7.1 Comprehensive Decision Tree
%%{init: {'theme': 'base', 'themeVariables': { 'primaryColor': '#2C3E50', 'primaryTextColor': '#fff', 'primaryBorderColor': '#16A085', 'lineColor': '#16A085', 'secondaryColor': '#E67E22', 'tertiaryColor': '#ecf0f1'}}}%%
flowchart TD
Start{Latency requirement<br/><10ms?} -->|Yes| Edge[Edge Processing<br/>Required]
Start -->|No| Safety{Safety-critical?<br/>Cannot depend<br/>on network?}
Safety -->|Yes| Edge
Safety -->|No| Volume{High data volume?<br/>>100 GB/day?}
Volume -->|Yes| Hybrid1[Hybrid: Edge filter<br/>+ Cloud storage]
Volume -->|No| Analytics{Need historical<br/>analytics across<br/>multiple sites?}
Analytics -->|Yes| Hybrid2[Hybrid: Edge real-time<br/>+ Cloud analytics]
Analytics -->|No| Privacy{Privacy concerns?<br/>Data must stay<br/>local?}
Privacy -->|Yes| Edge
Privacy -->|No| Cloud[Cloud Processing<br/>Sufficient]
Edge --> EdgeBenefits[<10ms latency<br/>Network independent<br/>Local privacy<br/>Limited compute]
Hybrid1 --> HybridBenefits[Bandwidth savings<br/>Local + Global<br/>Flexible<br/>Complex management]
Hybrid2 --> HybridBenefits
Cloud --> CloudBenefits[Unlimited compute<br/>Easy management<br/>Global access<br/>Network dependent]
style Start fill:#2C3E50,stroke:#16A085,color:#fff
style Safety fill:#2C3E50,stroke:#16A085,color:#fff
style Volume fill:#2C3E50,stroke:#16A085,color:#fff
style Analytics fill:#2C3E50,stroke:#16A085,color:#fff
style Privacy fill:#2C3E50,stroke:#16A085,color:#fff
style Edge fill:#E67E22,stroke:#2C3E50,color:#fff
style Cloud fill:#16A085,stroke:#2C3E50,color:#fff
style Hybrid1 fill:#7F8C8D,stroke:#2C3E50,color:#fff
style Hybrid2 fill:#7F8C8D,stroke:#2C3E50,color:#fff
1334.7.2 Workload Placement Guidelines
| Workload Type | Best Location | Justification |
|---|---|---|
| Safety-critical control | Edge | Cannot depend on network |
| Immediate alerting | Edge | <10ms response needed |
| Data filtering/validation | Edge | Reduce bandwidth 10-100x |
| Local dashboards | Edge | Works during outage |
| Sensor fusion | Edge/Fog | Combine multiple inputs locally |
| Anomaly detection (rules) | Edge | Simple thresholds |
| Anomaly detection (ML) | Fog | GPU for inference |
| Historical analysis | Cloud | Access to all locations |
| Model training | Cloud | Massive datasets, compute |
| Regulatory reporting | Cloud | Centralized compliance |
| Cross-site optimization | Cloud | Global view needed |
1334.8 Summary and Key Takeaways
1334.8.1 Core Architecture Principles
- Process data as close to the source as possible to minimize latency and bandwidth
- Edge gateways perform Evaluate-Format-Reduce (EFR) functions before cloud upload
- IoT Reference Model has 4 levels: devices, connectivity, edge, cloud storage
- Massive IoT (high volume, delay tolerant) vs Critical IoT (low latency, high reliability)
- Hybrid architectures combine edge real-time processing with cloud analytics
1334.8.2 Architecture Selection Summary
| Aspect | Edge Advantage | Cloud Advantage |
|---|---|---|
| When to use | Real-time, safety-critical, privacy-sensitive | Historical analysis, complex ML, cross-site aggregation |
| Data strategy | Filter and reduce locally | Store everything for long-term insights |
| Processing | Simple rules, lightweight ML | Deep learning, big data analytics |
| Failure mode | Local autonomy during outage | Redundant, always-available infrastructure |
1334.9 Whatβs Next
Continue your edge computing review with:
- Edge Review: Calculations - Formulas, bandwidth savings, power optimization, and practice problems
- Edge Review: Deployments - Real-world deployment patterns, technology stack, and security considerations
Return to: Edge Topic Review - Main review index