%%{init: {'theme': 'base', 'themeVariables': { 'primaryColor': '#2C3E50', 'primaryTextColor': '#fff', 'primaryBorderColor': '#16A085', 'lineColor': '#16A085', 'secondaryColor': '#E67E22', 'tertiaryColor': '#7F8C8D'}}}%%
graph TB
subgraph "NB-IoT Downlink (OFDM)"
PRB["Physical Resource Block<br/>180 kHz"]
SUB1["Subcarrier 1<br/>15 kHz"]
SUB2["Subcarrier 2<br/>15 kHz"]
SUB3["..."]
SUB12["Subcarrier 12<br/>15 kHz"]
TIME["Time Domain:<br/>1 subframe = 1 ms<br/>14 OFDM symbols"]
RE["Resource Element<br/>1 subcarrier Γ 1 symbol<br/>Smallest unit"]
end
PRB --> SUB1
PRB --> SUB2
PRB --> SUB3
PRB --> SUB12
SUB1 --> TIME
TIME --> RE
CHANNELS["Downlink Channels:<br/>β’ NPDSCH (Data)<br/>β’ NPDCCH (Control)<br/>β’ NPBCH (Broadcast)"]
RE --> CHANNELS
style PRB fill:#2C3E50,color:#fff
style TIME fill:#16A085,color:#fff
style RE fill:#E67E22,color:#fff
style CHANNELS fill:#3498DB,color:#fff
1129 NB-IoT Channel Access and Uplink Optimization
1129.1 Learning Objectives
By the end of this chapter, you will be able to:
- Analyze Channel Structure: Describe NB-IoT NPUSCH, NPDSCH, and control channel operations
- Configure Tone Modes: Select optimal single-tone vs multi-tone uplink configurations
- Understand Frequency Hopping: Explain how frequency diversity improves reliability
- Optimize for Power Efficiency: Apply tone selection strategies based on signal quality and payload size
1129.2 Prerequisites
Before diving into this chapter, you should be familiar with:
- NB-IoT Fundamentals: Understanding basic NB-IoT concepts, deployment modes, and system architecture
- NB-IoT PSM and eDRX: Knowledge of power saving modes provides context for channel access optimization
- Network Access and Physical Layer Protocols: Familiarity with physical layer concepts and radio communication principles
Deep Dives: - NB-IoT PSM and eDRX - Power saving modes and timer configuration - NB-IoT Coverage Enhancement - Repetition mechanisms for deep coverage - NB-IoT Labs and Implementation - AT command configuration
Comparisons: - Cellular IoT Comprehensive Review - NB-IoT vs LTE-M channel comparison
Related Topics: - LoRaWAN Architecture - Alternative LPWAN channel access
- NPDSCH (Downlink Shared Channel): User data to device.
- NPDCCH (Downlink Control Channel): Scheduling and control information.
- NPBCH (Broadcast Channel): Essential system information for initial access.
- NPUSCH (Uplink Shared Channel): Uplink user data from device.
- NPRACH (Random Access Channel): Initial access / connection requests.
1129.3 Downlink Channel Structure
NB-IoT downlink uses OFDM with 15 kHz subcarrier spacing:
{fig-alt=βNB-IoT downlink channel structure using OFDM with 180 kHz Physical Resource Block divided into 12 subcarriers of 15 kHz each. Time domain uses 1ms subframes with 14 OFDM symbols. Resource Element (smallest unit) is 1 subcarrier Γ 1 symbol. Downlink channels include NPDSCH for user data, NPDCCH for control information, and NPBCH for broadcast system information.β}
NB-IoT subframe structure: - Each subframe: 1 ms (14 OFDM symbols) - Physical Resource Block (PRB): 12 subcarriers Γ 180 kHz - Resource element: 1 subcarrier Γ 1 symbol
1129.4 Uplink Channel Structure
NB-IoT uplink uses SC-FDMA (Single Carrier FDMA) for power efficiency:
%%{init: {'theme': 'base', 'themeVariables': { 'primaryColor': '#2C3E50', 'primaryTextColor': '#fff', 'primaryBorderColor': '#16A085', 'lineColor': '#16A085', 'secondaryColor': '#E67E22', 'tertiaryColor': '#7F8C8D'}}}%%
graph TB
subgraph "NB-IoT Uplink (SC-FDMA)"
TONE["Tone Configuration"]
SINGLE3["Single-tone 3.75 kHz<br/>Max coverage<br/>~5 kbps"]
SINGLE15["Single-tone 15 kHz<br/>Extended coverage<br/>~16 kbps"]
MULTI3["Multi-tone 3Γ15 kHz<br/>Normal coverage<br/>~40 kbps"]
MULTI12["Multi-tone 12Γ15 kHz<br/>Normal coverage<br/>~160 kbps"]
HOPPING["Frequency Hopping<br/>Symbol-to-symbol<br/>Improves reliability"]
CHANNELS["Uplink Channels:<br/>β’ NPUSCH (Data)<br/>β’ NPRACH (Random Access)"]
end
TONE --> SINGLE3
TONE --> SINGLE15
TONE --> MULTI3
TONE --> MULTI12
SINGLE3 --> HOPPING
SINGLE15 --> HOPPING
MULTI3 --> HOPPING
MULTI12 --> HOPPING
HOPPING --> CHANNELS
style TONE fill:#2C3E50,color:#fff
style SINGLE3 fill:#27AE60,color:#fff
style SINGLE15 fill:#F39C12,color:#fff
style MULTI3 fill:#E67E22,color:#fff
style MULTI12 fill:#E74C3C,color:#fff
style HOPPING fill:#3498DB,color:#fff
style CHANNELS fill:#16A085,color:#fff
{fig-alt=βNB-IoT uplink channel structure using SC-FDMA with multiple tone configurations. Single-tone 3.75 kHz provides maximum coverage at ~5 kbps for deep indoor. Single-tone 15 kHz offers extended coverage at ~16 kbps. Multi-tone 3Γ15 kHz (45 kHz) provides ~40 kbps for normal coverage. Multi-tone 12Γ15 kHz (180 kHz full PRB) achieves ~160 kbps peak rate. Frequency hopping symbol-to-symbol improves reliability. Uplink channels include NPUSCH for data and NPRACH for random access.β}
Uplink tone configuration:
| Tones | Subcarrier Spacing | Bandwidth | Data Rate | Coverage |
|---|---|---|---|---|
| 1 tone | 3.75 kHz | 3.75 kHz | ~5 kbps | Maximum |
| 1 tone | 15 kHz | 15 kHz | ~16 kbps | Extended |
| 3 tones | 15 kHz | 45 kHz | ~40 kbps | Normal |
| 6 tones | 15 kHz | 90 kHz | ~80 kbps | Normal |
| 12 tones | 15 kHz | 180 kHz | ~160 kbps | Normal |
Frequency hopping: The tone frequency index changes from one symbol group to another (single-tone frequency hopping) to improve reliability and combat interference.
1129.5 Deep Dive: Single-Tone vs Multi-Tone Optimization
NB-IoT Uplink Tone Configurations:
%%{init: {'theme': 'base', 'themeVariables': { 'primaryColor': '#2C3E50', 'primaryTextColor': '#fff', 'primaryBorderColor': '#16A085', 'lineColor': '#16A085', 'secondaryColor': '#E67E22', 'tertiaryColor': '#7F8C8D', 'noteTextColor': '#2C3E50', 'noteBkgColor': '#FFF9E6'}}}%%
graph TD
A["NB-IoT Uplink<br/>NPUSCH"] --> B["Multi-Tone Options"]
A --> C["Single-Tone Options"]
B --> D["12 tones @ 15 kHz<br/>180 kHz, 160 kbps"]
B --> E["6 tones @ 15 kHz<br/>90 kHz, 80 kbps"]
B --> F["3 tones @ 15 kHz<br/>45 kHz, 40 kbps"]
C --> G["1 tone @ 15 kHz<br/>15 kHz, 16 kbps"]
C --> H["1 tone @ 3.75 kHz<br/>3.75 kHz, 5 kbps"]
D --> I["Best for: Large payloads<br/>Good signal (-85 to -100 dBm)"]
G --> J["Best for: Extended coverage<br/>Moderate signal (-108 to -125 dBm)"]
H --> K["Best for: Extreme coverage<br/>Poor signal (< -125 dBm)"]
style A fill:#2C3E50,stroke:#16A085,color:#fff
style D fill:#5cb85c,stroke:#2C3E50,color:#fff
style G fill:#16A085,stroke:#2C3E50,color:#fff
style H fill:#E67E22,stroke:#2C3E50,color:#fff
Power Concentration Principle:
When using fewer tones, transmit power is concentrated in narrower bandwidth:
12-tone configuration:
ββ Total TX power: 200 mW (23 dBm)
ββ Bandwidth: 180 kHz (12 tones Γ 15 kHz)
ββ Power spectral density: 200 mW / 180 kHz = 1.11 mW/kHz
ββ Power per tone: 200 mW / 12 = 16.7 mW per tone
1-tone @ 15 kHz configuration:
ββ Total TX power: 150 mW (22 dBm)
ββ Bandwidth: 15 kHz (single tone)
ββ Power spectral density: 150 mW / 15 kHz = 10 mW/kHz
ββ Power concentrated: 150 mW in ONE tone
Link budget comparison:
- 12-tone: 16.7 mW per tone = 12.2 dBm per tone
- 1-tone: 150 mW in one tone = 21.8 dBm
β Single-tone has +9.6 dB advantage per tone!
This +9.6 dB translates to:
- 2Γ better range in same coverage class
- OR half the repetitions needed for same reliability
Detailed Performance Comparison:
| Configuration | Bandwidth | Data Rate | TX Power | Coverage | Repetitions (RSRP = -115 dBm) | Battery Impact |
|---|---|---|---|---|---|---|
| 12 tones @ 15 kHz | 180 kHz | 160 kbps | 200 mA | Normal | 16-32Γ | High (packet loss) |
| 3 tones @ 15 kHz | 45 kHz | 40 kbps | 180 mA | Extended | 8-16Γ | Medium |
| 1 tone @ 15 kHz | 15 kHz | 16 kbps | 150 mA | Extended+ | 4-8Γ | Low |
| 1 tone @ 3.75 kHz | 3.75 kHz | 5 kbps | 120 mA | Extreme | 1-4Γ | Lowest |
Choosing the Right Configuration:
%%{init: {'theme': 'base', 'themeVariables': { 'primaryColor': '#2C3E50', 'primaryTextColor': '#fff', 'primaryBorderColor': '#16A085', 'lineColor': '#16A085', 'secondaryColor': '#E67E22', 'tertiaryColor': '#7F8C8D', 'noteTextColor': '#2C3E50', 'noteBkgColor': '#FFF9E6'}}}%%
graph TD
A["Select Tone<br/>Configuration"] --> B{"Signal Quality<br/>(RSRP)?"}
B -->|"> -100 dBm<br/>(Excellent)"| C["Multi-tone<br/>(6 or 12 tones)"]
B -->|"-100 to -108 dBm<br/>(Good)"| D["3 tones<br/>@ 15 kHz"]
B -->|"-108 to -125 dBm<br/>(Extended)"| E["1 tone<br/>@ 15 kHz"]
B -->|"< -125 dBm<br/>(Extreme)"| F["1 tone<br/>@ 3.75 kHz"]
C --> G["Fast uploads<br/>Low battery life priority"]
D --> H["Balanced<br/>performance"]
E --> I["Extended coverage<br/>Good battery life"]
F --> J["Maximum coverage<br/>Best battery life"]
style A fill:#2C3E50,stroke:#16A085,color:#fff
style C fill:#7F8C8D,stroke:#2C3E50,color:#fff
style D fill:#5cb85c,stroke:#2C3E50,color:#fff
style E fill:#16A085,stroke:#2C3E50,color:#fff
style F fill:#E67E22,stroke:#2C3E50,color:#fff
Battery Life Calculation Example:
Scenario: 100-byte message, 4 transmissions per day, RSRP = -115 dBm
Configuration comparison:
12-tone @ 15 kHz:
ββ Data rate: 160 kbps
ββ Base transmission time: (100 Γ 8 bits) / 160 kbps = 5 ms
ββ Repetitions needed: 32Γ (poor link budget at -115 dBm)
ββ Total TX time: 5 ms Γ 32 = 160 ms
ββ Retransmissions (30% packet loss): 3 attempts
ββ Effective time: 160 ms Γ 3 = 480 ms
ββ TX power: 200 mA
ββ Daily energy: 4 Γ 0.48s Γ 200mA = 0.384 mAh/day
ββ Battery life: 10,000 mAh / (0.384 + 0.12 PSM) = 19,841 days = 54 years
BUT: High packet loss (30%) = unreliable β
1-tone @ 15 kHz:
ββ Data rate: 16 kbps
ββ Base transmission time: (100 Γ 8) / 16 kbps = 50 ms
ββ Repetitions needed: 8Γ (better link budget from power concentration)
ββ Total TX time: 50 ms Γ 8 = 400 ms
ββ Retransmissions: Minimal (99% delivery)
ββ Effective time: 400 ms Γ 1.01 = 404 ms
ββ TX power: 150 mA
ββ Daily energy: 4 Γ 0.404s Γ 150mA = 0.242 mAh/day
ββ Battery life: 10,000 / (0.242 + 0.12) = 27,624 days = **75 years** β
Key insight:
- 12-tone seems faster (160 kbps vs 16 kbps)
- But needs 4Γ more repetitions due to weaker per-tone power
- 1-tone uses less total energy AND more reliable!
Design Recommendation:
For battery-powered NB-IoT devices with <500 byte payloads:
- Good signal (> -108 dBm): Use 3-tone @ 15 kHz
- Balanced speed and power
- Battery life: 12-18 years
- Extended coverage (-108 to -125 dBm): Use 1-tone @ 15 kHz
- Optimal power efficiency
- Battery life: 10-15 years
- 99%+ reliability
- Extreme coverage (< -125 dBm): Use 1-tone @ 3.75 kHz
- Maximum coverage
- Battery life: 8-12 years
- Last resort option
Avoid 12-tone mode for battery-powered devices unless: - Excellent signal (> -100 dBm) AND - Large payloads (> 500 bytes) AND - Battery life < 5 years acceptable
1129.6 Knowledge Check
Test your understanding of NB-IoT channel access: