%%{init: {'theme': 'base', 'themeVariables': { 'primaryColor': '#2C3E50', 'primaryTextColor': '#fff', 'primaryBorderColor': '#16A085', 'lineColor': '#16A085', 'secondaryColor': '#E67E22', 'tertiaryColor': '#7F8C8D', 'fontSize': '14px'}}}%%
graph TD
Start{Define<br/>Requirements}
Battery{Battery<br/>Powered?}
Range{Range<br/>Required?}
DataRate{Data<br/>Rate?}
Start --> Battery
Battery -->|Yes, >1 year| LongBattery[Long Battery<br/>Life Priority]
Battery -->|Mains power| Range
LongBattery --> Range
Range -->|less than 100m| BLE[Bluetooth LE<br/>Zigbee<br/>Thread]
Range -->|100m-10km| LPWAN[LoRaWAN<br/>Sigfox<br/>NB-IoT]
Range -->|greater than 10km| Cellular[Cellular<br/>LTE-M]
Battery -->|Mains power| DataRate
DataRate -->|less than 1 Mbps| SubGHz[Sub-GHz<br/>Mesh Networks]
DataRate -->|1-100 Mbps| Wi-Fi[Wi-Fi 6/7<br/>Ethernet]
DataRate -->|greater than 100 Mbps| Fiber[Fiber<br/>5G]
style Start fill:#E67E22,stroke:#16A085,color:#fff
style BLE fill:#16A085,stroke:#2C3E50,color:#fff
style LPWAN fill:#2C3E50,stroke:#16A085,color:#fff
style Wi-Fi fill:#16A085,stroke:#2C3E50,color:#fff
158 Technology Selection and Energy Management
158.1 Learning Objectives
By the end of this chapter, you will be able to:
- Apply Selection Frameworks: Use decision trees to select appropriate communication technologies based on requirements
- Calculate Power Budgets: Analyze energy consumption across different IoT operational modes
- Design Energy Systems: Plan energy harvesting and battery systems for autonomous IoT devices
- Understand Miniaturization Trends: Trace the historical progression of hardware miniaturization and its impact on IoT
- Technology Selection Framework: Systematic approach to choosing communication protocols based on battery constraints, range requirements, and data rate needs
- Duty Cycling: Energy optimization technique where devices sleep most of the time, waking briefly for sensing and transmission
- Energy Harvesting: Collecting power from environmental sources (solar, thermal, vibration, RF) to extend or eliminate battery replacement
- Power Budget: Analysis of energy consumption across sleep, sensing, and transmission modes to predict battery lifetime
- Miniaturization: Progressive shrinking of electronic components enabling smaller, cheaper, more efficient IoT devices
158.2 Prerequisites
Before diving into this chapter, you should be familiar with:
- IoT Evolution and Enablers Overview: Understanding the four core enablers
- IoT Communications Technology: Knowledge of PAN/LAN/MAN/WAN protocols
This is the third chapter in the Architectural Enablers series:
- IoT Evolution and Enablers Overview - History and convergence
- IoT Communications Technology - Protocols and network types
- Technology Selection and Energy Management (this chapter) - Decision frameworks
- Labs and Assessment - Hands-on practice
158.3 Technology Selection Decision Framework
Use this flowchart to select appropriate communication technologies:
158.4 Energy Management Guidelines
158.4.1 Power Consumption Tiers
Typical IoT device power consumption:
| Tier | Power Range | Battery Life (2000 mAh) | Example Applications |
|---|---|---|---|
| Ultra-Low | 1-100 uW | 10-20 years | Soil sensors, leak detectors |
| Low | 100 uW - 10 mW | 1-5 years | Weather stations, parking sensors |
| Medium | 10-100 mW | Weeks-months | Wearables, smart locks |
| High | 100 mW - 1 W | Days-weeks | Cameras, Wi-Fi devices |
158.4.2 Power Budget Calculation
Formula for average current:
Average Current = (Sleep% x Sleep_I) + (Active% x Active_I) + (TX% x TX_I)
Example: LoRa soil sensor - Sleep: 99.9% at 5 uA = 0.005 mA - Sensing: 0.05% at 5 mA = 0.0025 mA - Transmit: 0.05% at 100 mA = 0.05 mA - Average: 0.058 mA - Battery life (2000 mAh): 34,483 hours = 3.9 years
158.5 IoT Evolution Timeline
%%{init: {'theme': 'base', 'themeVariables': { 'primaryColor': '#2C3E50', 'primaryTextColor': '#fff', 'primaryBorderColor': '#16A085', 'lineColor': '#16A085', 'secondaryColor': '#E67E22', 'tertiaryColor': '#7F8C8D', 'fontSize': '14px'}}}%%
timeline
title IoT Evolution Timeline
1999 : RFID Technology : Auto-ID Labs
2008 : First IoT Wave : Smart devices emerge
2012 : IPv6 Adoption : Unlimited device addressing
2015 : LPWAN Networks : LoRa, Sigfox deployed
2018 : 5G & Edge Computing : Ultra-low latency
2020 : AI at Edge : TinyML, inference on devices
2025 : Massive IoT Deployments : Billions of connected devices
158.6 Communication Technology Selection Flowchart
%%{init: {'theme': 'base', 'themeVariables': { 'primaryColor': '#2C3E50', 'primaryTextColor': '#fff', 'primaryBorderColor': '#16A085', 'lineColor': '#16A085', 'secondaryColor': '#E67E22', 'tertiaryColor': '#7F8C8D', 'fontSize': '14px'}}}%%
graph TD
Start{Range<br/>Requirement?}
Short[Short: less than 100m]
Medium[Medium: 100m-1km]
Long[Long: greater than 1km]
Start -->|0-100m| Short
Start -->|100m-1km| Medium
Start -->|greater than 1km| Long
Short --> BLE[Bluetooth LE]
Short --> Zigbee[Zigbee]
Medium --> Wi-Fi[Wi-Fi]
Medium --> Thread[Thread]
Long --> LoRa[LoRaWAN]
Long --> NB[NB-IoT]
Long --> Cell[Cellular]
style Start fill:#E67E22,stroke:#16A085,color:#fff
style BLE fill:#16A085,stroke:#2C3E50,color:#fff
style Wi-Fi fill:#16A085,stroke:#2C3E50,color:#fff
style LoRa fill:#2C3E50,stroke:#16A085,color:#fff
158.7 Energy Harvesting Architecture
%%{init: {'theme': 'base', 'themeVariables': { 'primaryColor': '#2C3E50', 'primaryTextColor': '#fff', 'primaryBorderColor': '#16A085', 'lineColor': '#16A085', 'secondaryColor': '#E67E22', 'tertiaryColor': '#7F8C8D', 'fontSize': '14px'}}}%%
graph LR
Solar[Solar Panel]
Thermal[Thermoelectric]
Vibration[Piezoelectric]
RF[RF Harvesting]
Solar --> PMU[Power Management<br/>Unit]
Thermal --> PMU
Vibration --> PMU
RF --> PMU
PMU --> Battery[Energy Storage<br/>Battery/Capacitor]
Battery --> MCU[Microcontroller<br/>& Sensors]
style Solar fill:#E67E22,stroke:#16A085,color:#fff
style PMU fill:#16A085,stroke:#2C3E50,color:#fff
style MCU fill:#2C3E50,stroke:#16A085,color:#fff
158.7.1 Energy Harvesting Power Density
| Source | Typical Power | Best Application |
|---|---|---|
| Outdoor Solar | 10-100 mW/cm2 | Environmental sensors, agricultural |
| Indoor Solar | 10-100 uW/cm2 | Building sensors, retail tags |
| Vibration | 10-500 uW | Industrial machinery, bridges |
| Thermal | 10-50 uW/cm2 | Body heat, industrial processes |
| RF | 1-100 uW | Near wireless power transmitters |
158.8 Miniaturization Trend
%%{init: {'theme': 'base', 'themeVariables': { 'primaryColor': '#2C3E50', 'primaryTextColor': '#fff', 'primaryBorderColor': '#16A085', 'lineColor': '#16A085', 'secondaryColor': '#E67E22', 'tertiaryColor': '#7F8C8D', 'fontSize': '14px'}}}%%
graph LR
subgraph 1970s[1970s-1980s]
A[Large ICs<br/>100+ pins]
end
subgraph 2000s[2000s]
B[System-on-Chip<br/>SoC Integration]
end
subgraph 2010s[2010s]
C[Wearable MCUs<br/>5mm x 5mm]
end
subgraph 2020s[2020s+]
D[Sub-mm Sensors<br/>Dust-sized IoT]
end
A -->|Moore's Law| B
B -->|Integration| C
C -->|Nano-scale| D
style 1970s fill:#7F8C8D,stroke:#16A085,color:#fff
style 2000s fill:#16A085,stroke:#2C3E50,color:#fff
style 2010s fill:#2C3E50,stroke:#16A085,color:#fff
style 2020s fill:#E67E22,stroke:#16A085,color:#fff
158.9 Architecture Enablers Ecosystem
%%{init: {'theme': 'base', 'themeVariables': { 'primaryColor': '#2C3E50', 'primaryTextColor': '#fff', 'primaryBorderColor': '#16A085', 'lineColor': '#16A085', 'secondaryColor': '#E67E22', 'tertiaryColor': '#7F8C8D', 'fontSize': '16px'}}}%%
mindmap
root((Architecture<br/>Enablers))
Miniaturization
SoC Integration
MEMS Sensors
Reduced Cost
Computing Power
Edge Processing
Low-power MCUs
AI Acceleration
Energy
Batteries
Harvesting
Power Management
Communications
Short-range: BLE
Long-range: LoRa
Cellular: NB-IoT
Development
Platforms
Tools & IDEs
Cloud Services
%%{init: {'theme': 'base', 'themeVariables': { 'primaryColor': '#2C3E50', 'primaryTextColor': '#fff', 'primaryBorderColor': '#16A085', 'lineColor': '#16A085', 'secondaryColor': '#E67E22', 'tertiaryColor': '#7F8C8D', 'fontSize': '14px'}}}%%
graph TB
subgraph L5[" IoT Application Layer "]
App[Smart Applications<br/>Analytics & Intelligence]
end
subgraph L4[" Development Enablers "]
Dev[Platforms & Tools<br/>Arduino, Raspberry Pi, Cloud SDKs]
end
subgraph L3[" Communications Enablers "]
Comm[Protocols & Networks<br/>BLE - Zigbee - LoRa - NB-IoT - 5G]
end
subgraph L2[" Computing & Energy Enablers "]
Compute[Processing Power<br/>Edge MCUs, AI Accelerators]
Energy[Power Management<br/>Batteries, Harvesting, Low-Power Design]
end
subgraph L1[" Physical Foundation "]
Mini[Miniaturization<br/>SoC, MEMS, Nano-sensors]
end
App --> Dev
Dev --> Comm
Comm --> Compute
Comm --> Energy
Compute --> Mini
Energy --> Mini
style L5 fill:#E67E22,stroke:#16A085,color:#fff
style L4 fill:#16A085,stroke:#2C3E50,color:#fff
style L3 fill:#2C3E50,stroke:#16A085,color:#fff
style L2 fill:#16A085,stroke:#2C3E50,color:#fff
style L1 fill:#7F8C8D,stroke:#16A085,color:#fff
style App fill:#E67E22,stroke:#16A085,color:#fff
style Dev fill:#16A085,stroke:#2C3E50,color:#fff
style Comm fill:#2C3E50,stroke:#16A085,color:#fff
style Compute fill:#16A085,stroke:#2C3E50,color:#fff
style Energy fill:#16A085,stroke:#2C3E50,color:#fff
style Mini fill:#7F8C8D,stroke:#16A085,color:#fff
158.10 Power Consumption Comparison
%%{init: {'theme': 'base', 'themeVariables': { 'primaryColor': '#2C3E50', 'primaryTextColor': '#fff', 'primaryBorderColor': '#16A085', 'lineColor': '#16A085', 'secondaryColor': '#E67E22', 'tertiaryColor': '#7F8C8D', 'fontSize': '14px'}}}%%
graph TB
subgraph High[High Power: 1-10W]
H1[Wi-Fi Active: 500mW]
H2[LTE Cat-M: 800mW]
end
subgraph Medium[Medium Power: 10-100mW]
M1[Bluetooth LE: 15mW]
M2[Zigbee: 30mW]
end
subgraph Low[Low Power: less than 10mW]
L1[LoRa TX: 5mW]
L2[Sleep Mode: 1uW]
end
style High fill:#E67E22,stroke:#16A085,color:#fff
style Medium fill:#16A085,stroke:#2C3E50,color:#fff
style Low fill:#2C3E50,stroke:#16A085,color:#fff
158.11 Knowledge Check
Myth: Higher processing power and data rates always result in better IoT systems.
Reality: IoT design is all about optimization for constraints, not maximizing specifications. A Wi-Fi-enabled device might have 100x the data rate of a LoRa device, but it’s useless for a remote agricultural sensor that needs 5-year battery life.
Why this matters: - Battery life trumps performance: A soil sensor transmitting 20 bytes/hour needs years of battery life, not megabit speeds - Cost at scale: Deploying 10,000 sensors? A $5 difference per device = $50,000 total cost difference - Network effects: Choosing cellular ($2/month/device) vs. LoRaWAN (private network, $0/month) = $240,000/year for 10,000 devices
The right approach: Start with constraints (range, battery life, cost), then select the minimum technology that meets requirements.
158.12 Chapter Summary
This chapter presented frameworks for selecting IoT technologies and managing energy:
- Selection Framework: Use decision trees starting with power constraints, then range, then data rate
- Power Budget Analysis: Calculate average current from duty cycle percentages to predict battery lifetime
- Energy Harvesting: Solar, thermal, vibration, and RF sources can extend or eliminate battery replacement
- Miniaturization Impact: Moore’s Law continues driving smaller, cheaper, more efficient IoT devices
These frameworks enable practical design decisions for real-world IoT deployments.
158.13 What’s Next?
The final chapter in this series provides hands-on labs to practice these concepts and assessment materials for exam preparation.