225  PID Controller Tuner

Interactive PID Parameter Optimization

225.1 Understanding PID Tuning

PID (Proportional-Integral-Derivative) controllers are fundamental to IoT and industrial automation systems. Proper tuning of the Kp, Ki, and Kd parameters is critical for achieving fast, stable, and accurate control. This interactive simulator allows you to experiment with different tuning parameters and observe their effects on system response.

NoteAbout This Simulator

This interactive tool simulates a second-order process responding to step changes. Adjust the PID parameters using the sliders and observe how the system responds. The performance metrics help you understand the trade-offs between response speed, overshoot, and stability.

TipHow to Use
  1. Select a Process Type to change the system dynamics
  2. Adjust Kp, Ki, and Kd sliders to tune the controller
  3. Use Preset Tuning buttons for quick starting points
  4. Click Apply Step to introduce a setpoint change
  5. Watch the Step Response Graph and Performance Metrics
  6. Click Reset to start fresh with new parameters

225.2 Understanding PID Tuning

225.2.1 The Three Parameters

Proportional (Kp): Responds to current error. Higher values provide faster response but may cause overshoot and oscillations.

Integral (Ki): Eliminates steady-state error by accumulating past errors. Too high values can cause integral windup and instability.

Derivative (Kd): Anticipates future error based on rate of change. Provides damping to reduce overshoot but can amplify noise.

225.2.2 Tuning Guidelines

TipZiegler-Nichols Method
  1. Set Ki and Kd to zero
  2. Increase Kp until sustained oscillation
  3. Note ultimate gain (Ku) and period (Tu)
  4. Apply: Kp = 0.6Ku, Ki = 2Kp/Tu, Kd = Kp*Tu/8

225.2.3 Performance Metrics Explained

PID Performance Metrics
Metric Definition Goal
Overshoot Peak value above setpoint (%) Minimize (<10% typical)
Settling Time Time to stay within 2% band Minimize
Steady-State Error Final offset from setpoint Zero or minimal
Rise Time Time from 10% to 90% of setpoint Balance with overshoot
Peak Time Time to reach maximum overshoot Indicates response speed

225.2.4 Process Type Characteristics

%% fig-alt: Comparison diagram showing three process types - Temperature Control (slow response with thermal lag), Motor Speed (fast electromechanical response), and Level Control (integrating behavior) - with their typical time constants and control challenges.
%%{init: {'theme': 'base', 'themeVariables': {'primaryColor': '#2C3E50', 'primaryTextColor': '#FFFFFF', 'primaryBorderColor': '#16A085', 'lineColor': '#7F8C8D', 'secondaryColor': '#ECF0F1', 'tertiaryColor': '#FFFFFF'}}}%%
flowchart TB
    subgraph Temp["Temperature Control"]
        T1["Slow dynamics"]
        T2["tau = 10s primary"]
        T3["Significant lag"]
        T4["Aggressive tuning tolerated"]
    end

    subgraph Motor["Motor Speed"]
        M1["Fast dynamics"]
        M2["tau = 0.5s primary"]
        M3["Quick response"]
        M4["Watch for oscillation"]
    end

    subgraph Level["Level Control"]
        L1["Medium dynamics"]
        L2["tau = 5s primary"]
        L3["Integrating behavior"]
        L4["Steady-state critical"]
    end

%% fig-alt: Flowchart showing how adjusting each PID parameter (Kp, Ki, Kd) affects system response characteristics like rise time, overshoot, settling time, and steady-state error, helping users understand tuning trade-offs.
%%{init: {'theme': 'base', 'themeVariables': {'primaryColor': '#2C3E50', 'primaryTextColor': '#FFFFFF', 'primaryBorderColor': '#16A085', 'lineColor': '#7F8C8D', 'secondaryColor': '#ECF0F1', 'tertiaryColor': '#FFFFFF'}}}%%
flowchart LR
    subgraph PARAMS["PID Parameters"]
        KP["<b>Kp</b><br/>Proportional"]
        KI["<b>Ki</b><br/>Integral"]
        KD["<b>Kd</b><br/>Derivative"]
    end

    subgraph EFFECTS["System Response Effects"]
        RISE["Rise Time"]
        OVER["Overshoot"]
        SETTLE["Settling Time"]
        SSE["Steady-State Error"]
    end

    KP -->|"Increase"| R1["Decreases"]
    KP -->|"Increase"| O1["Increases"]
    KP -->|"Increase"| S1["Small change"]
    KP -->|"Increase"| E1["Decreases"]

    KI -->|"Increase"| R2["Decreases"]
    KI -->|"Increase"| O2["Increases"]
    KI -->|"Increase"| S2["Increases"]
    KI -->|"Increase"| E2["Eliminates"]

    KD -->|"Increase"| R3["Minor change"]
    KD -->|"Increase"| O3["Decreases"]
    KD -->|"Increase"| S3["Decreases"]
    KD -->|"Increase"| E3["No effect"]

    R1 --> RISE
    R2 --> RISE
    R3 --> RISE
    O1 --> OVER
    O2 --> OVER
    O3 --> OVER
    S1 --> SETTLE
    S2 --> SETTLE
    S3 --> SETTLE
    E1 --> SSE
    E2 --> SSE
    E3 --> SSE

    style KP fill:#16A085,stroke:#2C3E50,stroke-width:2px,color:#fff
    style KI fill:#E67E22,stroke:#2C3E50,stroke-width:2px,color:#fff
    style KD fill:#2C3E50,stroke:#16A085,stroke-width:2px,color:#fff
    style RISE fill:#ECF0F1,stroke:#7F8C8D,stroke-width:1px,color:#2C3E50
    style OVER fill:#ECF0F1,stroke:#7F8C8D,stroke-width:1px,color:#2C3E50
    style SETTLE fill:#ECF0F1,stroke:#7F8C8D,stroke-width:1px,color:#2C3E50
    style SSE fill:#ECF0F1,stroke:#7F8C8D,stroke-width:1px,color:#2C3E50

This flowchart provides a quick reference for understanding how each PID parameter affects system behavior. Use it alongside the simulator to predict what will happen when you adjust a parameter before testing.

WarningCommon Tuning Mistakes
  • Too much Kp: Causes oscillation and overshoot
  • Too much Ki: Causes integral windup and slow recovery
  • Too much Kd: Amplifies noise, causes jitter
  • Ignoring process dynamics: What works for motors may destabilize temperature control

225.3 What’s Next

Explore related control and automation topics:


Interactive simulator created for the IoT Class Textbook - CONTROL-001