%% fig-alt: Comparison diagram showing three process types - Temperature Control (slow response with thermal lag), Motor Speed (fast electromechanical response), and Level Control (integrating behavior) - with their typical time constants and control challenges.
%%{init: {'theme': 'base', 'themeVariables': {'primaryColor': '#2C3E50', 'primaryTextColor': '#FFFFFF', 'primaryBorderColor': '#16A085', 'lineColor': '#7F8C8D', 'secondaryColor': '#ECF0F1', 'tertiaryColor': '#FFFFFF'}}}%%
flowchart TB
subgraph Temp["Temperature Control"]
T1["Slow dynamics"]
T2["tau = 10s primary"]
T3["Significant lag"]
T4["Aggressive tuning tolerated"]
end
subgraph Motor["Motor Speed"]
M1["Fast dynamics"]
M2["tau = 0.5s primary"]
M3["Quick response"]
M4["Watch for oscillation"]
end
subgraph Level["Level Control"]
L1["Medium dynamics"]
L2["tau = 5s primary"]
L3["Integrating behavior"]
L4["Steady-state critical"]
end
225 PID Controller Tuner
Interactive PID Parameter Optimization
225.1 Understanding PID Tuning
PID (Proportional-Integral-Derivative) controllers are fundamental to IoT and industrial automation systems. Proper tuning of the Kp, Ki, and Kd parameters is critical for achieving fast, stable, and accurate control. This interactive simulator allows you to experiment with different tuning parameters and observe their effects on system response.
This interactive tool simulates a second-order process responding to step changes. Adjust the PID parameters using the sliders and observe how the system responds. The performance metrics help you understand the trade-offs between response speed, overshoot, and stability.
- Select a Process Type to change the system dynamics
- Adjust Kp, Ki, and Kd sliders to tune the controller
- Use Preset Tuning buttons for quick starting points
- Click Apply Step to introduce a setpoint change
- Watch the Step Response Graph and Performance Metrics
- Click Reset to start fresh with new parameters
225.2 Understanding PID Tuning
225.2.1 The Three Parameters
Proportional (Kp): Responds to current error. Higher values provide faster response but may cause overshoot and oscillations.
Integral (Ki): Eliminates steady-state error by accumulating past errors. Too high values can cause integral windup and instability.
Derivative (Kd): Anticipates future error based on rate of change. Provides damping to reduce overshoot but can amplify noise.
225.2.2 Tuning Guidelines
- Set Ki and Kd to zero
- Increase Kp until sustained oscillation
- Note ultimate gain (Ku) and period (Tu)
- Apply: Kp = 0.6Ku, Ki = 2Kp/Tu, Kd = Kp*Tu/8
225.2.3 Performance Metrics Explained
| Metric | Definition | Goal |
|---|---|---|
| Overshoot | Peak value above setpoint (%) | Minimize (<10% typical) |
| Settling Time | Time to stay within 2% band | Minimize |
| Steady-State Error | Final offset from setpoint | Zero or minimal |
| Rise Time | Time from 10% to 90% of setpoint | Balance with overshoot |
| Peak Time | Time to reach maximum overshoot | Indicates response speed |
225.2.4 Process Type Characteristics
%% fig-alt: Flowchart showing how adjusting each PID parameter (Kp, Ki, Kd) affects system response characteristics like rise time, overshoot, settling time, and steady-state error, helping users understand tuning trade-offs.
%%{init: {'theme': 'base', 'themeVariables': {'primaryColor': '#2C3E50', 'primaryTextColor': '#FFFFFF', 'primaryBorderColor': '#16A085', 'lineColor': '#7F8C8D', 'secondaryColor': '#ECF0F1', 'tertiaryColor': '#FFFFFF'}}}%%
flowchart LR
subgraph PARAMS["PID Parameters"]
KP["<b>Kp</b><br/>Proportional"]
KI["<b>Ki</b><br/>Integral"]
KD["<b>Kd</b><br/>Derivative"]
end
subgraph EFFECTS["System Response Effects"]
RISE["Rise Time"]
OVER["Overshoot"]
SETTLE["Settling Time"]
SSE["Steady-State Error"]
end
KP -->|"Increase"| R1["Decreases"]
KP -->|"Increase"| O1["Increases"]
KP -->|"Increase"| S1["Small change"]
KP -->|"Increase"| E1["Decreases"]
KI -->|"Increase"| R2["Decreases"]
KI -->|"Increase"| O2["Increases"]
KI -->|"Increase"| S2["Increases"]
KI -->|"Increase"| E2["Eliminates"]
KD -->|"Increase"| R3["Minor change"]
KD -->|"Increase"| O3["Decreases"]
KD -->|"Increase"| S3["Decreases"]
KD -->|"Increase"| E3["No effect"]
R1 --> RISE
R2 --> RISE
R3 --> RISE
O1 --> OVER
O2 --> OVER
O3 --> OVER
S1 --> SETTLE
S2 --> SETTLE
S3 --> SETTLE
E1 --> SSE
E2 --> SSE
E3 --> SSE
style KP fill:#16A085,stroke:#2C3E50,stroke-width:2px,color:#fff
style KI fill:#E67E22,stroke:#2C3E50,stroke-width:2px,color:#fff
style KD fill:#2C3E50,stroke:#16A085,stroke-width:2px,color:#fff
style RISE fill:#ECF0F1,stroke:#7F8C8D,stroke-width:1px,color:#2C3E50
style OVER fill:#ECF0F1,stroke:#7F8C8D,stroke-width:1px,color:#2C3E50
style SETTLE fill:#ECF0F1,stroke:#7F8C8D,stroke-width:1px,color:#2C3E50
style SSE fill:#ECF0F1,stroke:#7F8C8D,stroke-width:1px,color:#2C3E50
This flowchart provides a quick reference for understanding how each PID parameter affects system behavior. Use it alongside the simulator to predict what will happen when you adjust a parameter before testing.
- Too much Kp: Causes oscillation and overshoot
- Too much Ki: Causes integral windup and slow recovery
- Too much Kd: Amplifies noise, causes jitter
- Ignoring process dynamics: What works for motors may destabilize temperature control
225.3 What’s Next
Explore related control and automation topics:
- PID Feedback Control Loop - Basic PID animation
- Process Control and PID - Comprehensive PID theory
- Duty Cycle Animation - Power management through timing
Interactive simulator created for the IoT Class Textbook - CONTROL-001